Asia Pacific University Library catalogue


Embracing interference in wireless systems [electronic resource] / Shyamnath Gollakota.

By: Gollakota, ShyamnathMaterial type: TextTextSeries: ACM books ; #1.Publication details: [San Rafael] : Morgan & Claypool, c2014Edition: First editionDescription: 1 online resource (xiv, 157 pages) : illustrationsISBN: 9781627054751Subject(s): Electromagnetic interference | Wireless communication systems | Coding theoryDDC classification: 621.38224 LOC classification: TK7867.2 | .G65 2014ebOnline resources: Available in ACM Digital Library. Requires Log In to view full text.
Contents:
1. Introduction -- 1.1 Embracing wireless interference -- 1.1.1 Decoding 802.11 collisions -- 1.1.2 Combating high-power cross-technology interference -- 1.1.3 Non-invasive approach to securing medical implants -- 1.1.4 Secure pairing without passwords or prior secrets -- 1.2 Organization --
2. Decoding 802.11 collisions -- 2.1 Related work -- 2.2 Scope -- 2.3 A communication primer -- 2.3.1 Practical issues -- 2.4 ZigZag decoding -- 2.4.1 Is it a collision? -- 2.4.2 Did the AP receive two matching collisions? -- 2.4.3 How does the AP decode matching collisions? -- 2.4.4 Estimating and tracking system parameters -- 2.5 Dealing with errors -- 2.6 Backward compatibility -- 2.7 Beyond two interferers -- 2.8 Complexity -- 2.9 Experimental environment -- 2.9.1 Setup -- 2.9.2 Micro-evaluation -- 2.9.3 Does ZigZag work -- 2.9.4 The impact of the SNR -- 2.9.5 Testbed throughput and loss rate -- 2.9.6 Many hidden terminals -- 2.10 Discussion --
3. Combating high-power cross-technology interference -- 3.1 Impact of cross-technology interference on 802.11n -- 3.1.1 Digital cordless phone -- 3.1.2 Baby monitor -- 3.1.3 Microwave ovens -- 3.1.4 Frequency hopping bluetooth -- 3.1.5 Summary -- 3.2 MIMO and OFDM background -- 3.3 Problem domain -- 3.4 TIMO -- 3.5 Decoding in the presence of cross-technology interference -- 3.5.1 Computing the interferer's channel ratio -- 3.5.2 Decoding the signal of interest -- 3.5.3 Iterating to increase accuracy -- 3.5.4 Estimating the 802.11n channel functions -- 3.5.5 Finding the interference boundaries -- 3.5.6 Putting it together -- 3.5.7 Complexity -- 3.6 Ensuring the interferer can decode -- 3.7 Implementation -- 3.8 Performance evaluation -- 3.8.1 Cordless phone -- 3.8.2 Baby monitor -- 3.8.3 Microwave oven -- 3.8.4 Multiple interferers -- 3.9 Micro benchmarks -- 3.10 Related work -- 3.11 Discussion --
4. Non-invasive approach to securing medical implants -- 4.1 IMD communication primer -- 4.2 Assumptions and threat model -- 4.2.1 Assumptions -- 4.2.2 Threat model -- 4.3 System overview -- 4.4 Jammer-cum-receiver -- 4.5 Protecting against passive eavesdroppers -- 4.6 Protecting against active adversaries -- 4.7 Implementation -- 4.8 Testing environment -- 4.9 Evaluation -- 4.9.1 Micro-benchmark results -- 4.9.2 Protecting from passive adversaries -- 4.9.3 Protecting from active adversaries -- 4.10 Coexistence -- 4.11 Related work -- 4.12 Discussion --
5. Secure pairing without passwords or prior secrets -- 5.1 Related work -- 5.2 PBC and 802.11 background -- 5.2.1 Push button configuration -- 5.2.2 802.11 -- 5.3 Security model -- 5.3.1 Threat model -- 5.3.2 Security guarantees -- 5.4 TEP design -- 5.4.1 Tamper-evident message (TEM) -- 5.4.2 Securing PBC using TEM -- 5.4.3 Example scenarios -- 5.4.4 Making pairing faster -- 5.5 TEM on off-the-shelf hardware -- 5.5.1 Scheduling slot transmission -- 5.5.2 Energy detection at the receiver -- 5.5.3 Sending a synchronization packet -- 5.5.4 Checking for TEM while transmitting -- 5.6 Evaluation -- 5.6.1 Evaluating TEP's security -- 5.6.2 Evaluating TEP's accuracy -- 5.6.3 Evaluating TEP's performance -- 5.6.4 Performance with non-802.11 traffic -- 5.7 Discussion --
6. Conclusion -- 6.1 Looking forward -- Bibliography -- Author's biography.
Abstract: The wireless medium is a shared resource. If nearby devices transmit at the same time, their signals interfere, resulting in a collision. In traditional networks, collisions cause the loss of the transmitted information. For this reason, wireless networks have been designed with the assumption that interference is intrinsically harmful and must be avoided. This book takes an alternate approach: instead of viewing interference as an inherently counterproductive phenomenon that should to be avoided, we design practical systems that transform interference into a harmless, and even beneficial, phenomenon.
    Average rating: 0.0 (0 votes)
Item type Current library Collection Call number Copy number Status Date due Barcode
General Circulation General Circulation APU Library
Online Database
E-Book TK7867.2 .G65 2014eb (Browse shelf (Opens below)) 1 Available

Includes bibliographical references (pages 147-157).

1. Introduction -- 1.1 Embracing wireless interference -- 1.1.1 Decoding 802.11 collisions -- 1.1.2 Combating high-power cross-technology interference -- 1.1.3 Non-invasive approach to securing medical implants -- 1.1.4 Secure pairing without passwords or prior secrets -- 1.2 Organization --

2. Decoding 802.11 collisions -- 2.1 Related work -- 2.2 Scope -- 2.3 A communication primer -- 2.3.1 Practical issues -- 2.4 ZigZag decoding -- 2.4.1 Is it a collision? -- 2.4.2 Did the AP receive two matching collisions? -- 2.4.3 How does the AP decode matching collisions? -- 2.4.4 Estimating and tracking system parameters -- 2.5 Dealing with errors -- 2.6 Backward compatibility -- 2.7 Beyond two interferers -- 2.8 Complexity -- 2.9 Experimental environment -- 2.9.1 Setup -- 2.9.2 Micro-evaluation -- 2.9.3 Does ZigZag work -- 2.9.4 The impact of the SNR -- 2.9.5 Testbed throughput and loss rate -- 2.9.6 Many hidden terminals -- 2.10 Discussion --

3. Combating high-power cross-technology interference -- 3.1 Impact of cross-technology interference on 802.11n -- 3.1.1 Digital cordless phone -- 3.1.2 Baby monitor -- 3.1.3 Microwave ovens -- 3.1.4 Frequency hopping bluetooth -- 3.1.5 Summary -- 3.2 MIMO and OFDM background -- 3.3 Problem domain -- 3.4 TIMO -- 3.5 Decoding in the presence of cross-technology interference -- 3.5.1 Computing the interferer's channel ratio -- 3.5.2 Decoding the signal of interest -- 3.5.3 Iterating to increase accuracy -- 3.5.4 Estimating the 802.11n channel functions -- 3.5.5 Finding the interference boundaries -- 3.5.6 Putting it together -- 3.5.7 Complexity -- 3.6 Ensuring the interferer can decode -- 3.7 Implementation -- 3.8 Performance evaluation -- 3.8.1 Cordless phone -- 3.8.2 Baby monitor -- 3.8.3 Microwave oven -- 3.8.4 Multiple interferers -- 3.9 Micro benchmarks -- 3.10 Related work -- 3.11 Discussion --

4. Non-invasive approach to securing medical implants -- 4.1 IMD communication primer -- 4.2 Assumptions and threat model -- 4.2.1 Assumptions -- 4.2.2 Threat model -- 4.3 System overview -- 4.4 Jammer-cum-receiver -- 4.5 Protecting against passive eavesdroppers -- 4.6 Protecting against active adversaries -- 4.7 Implementation -- 4.8 Testing environment -- 4.9 Evaluation -- 4.9.1 Micro-benchmark results -- 4.9.2 Protecting from passive adversaries -- 4.9.3 Protecting from active adversaries -- 4.10 Coexistence -- 4.11 Related work -- 4.12 Discussion --

5. Secure pairing without passwords or prior secrets -- 5.1 Related work -- 5.2 PBC and 802.11 background -- 5.2.1 Push button configuration -- 5.2.2 802.11 -- 5.3 Security model -- 5.3.1 Threat model -- 5.3.2 Security guarantees -- 5.4 TEP design -- 5.4.1 Tamper-evident message (TEM) -- 5.4.2 Securing PBC using TEM -- 5.4.3 Example scenarios -- 5.4.4 Making pairing faster -- 5.5 TEM on off-the-shelf hardware -- 5.5.1 Scheduling slot transmission -- 5.5.2 Energy detection at the receiver -- 5.5.3 Sending a synchronization packet -- 5.5.4 Checking for TEM while transmitting -- 5.6 Evaluation -- 5.6.1 Evaluating TEP's security -- 5.6.2 Evaluating TEP's accuracy -- 5.6.3 Evaluating TEP's performance -- 5.6.4 Performance with non-802.11 traffic -- 5.7 Discussion --

6. Conclusion -- 6.1 Looking forward -- Bibliography -- Author's biography.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

The wireless medium is a shared resource. If nearby devices transmit at the same time, their signals interfere, resulting in a collision. In traditional networks, collisions cause the loss of the transmitted information. For this reason, wireless networks have been designed with the assumption that interference is intrinsically harmful and must be avoided. This book takes an alternate approach: instead of viewing interference as an inherently counterproductive phenomenon that should to be avoided, we design practical systems that transform interference into a harmless, and even beneficial, phenomenon.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

There are no comments on this title.

to post a comment.