000 03974nam a22005297a 4500
001 20437654
003 APU
005 20220824171944.0
008 210803t20162016nyu b 000 0 eng d
010 _a 2017471066
020 _a9781970001587 (epub)
020 _a1970001585 (epub)
020 _a9781970001570 (pdf)
020 _a1970001577 (pdf)
020 _a9781970001594
020 _a9781970001563
035 _a(OCoLC)ocn953497712
040 _aYDXCP
_beng
_cAPU
_dSF
042 _alccopycat
050 0 0 _aQA76.9.D5
_bZ34 2016eb
082 0 4 _a004.36
_223
100 1 _aZaharia, Matei,
_947413
245 1 3 _aAn architecture for fast and general data processing on large clusters
_h[electronic resources] /
_cMatei Zaharia.
260 _a[New York] : Association for Computing Machinery ; [San Rafael] :
_bMorgan & Claypool Publishers,
_cc2016.
300 _a1 online resource (208 pages) ;
300 _a1 pdf (208 pages) ;
490 1 _aACM books ;
_v#11
_x2374-6777 ;
504 _aIncludes bibliographical references (pages 119-128).
505 0 _a1. Introduction -- 1.1 Problems with specialized systems -- 1.2 Resilient distributed datasets (RDDs) -- 1.3 Models implemented over RDDs -- 1.4 Summary of results -- 1.5 Book overview --
505 8 _a2. Resilient distributed datasets -- 2.1 Introduction -- 2.2 RDD abstraction -- 2.3 Spark programming interface -- 2.4 Representing RDDs -- 2.5 Implementation -- 2.6 Evaluation -- 2.7 Discussion -- 2.8 Related work -- 2.9 Summary --
505 8 _a3. Models built over RDDs -- 3.1 Introduction -- 3.2 Techniques for implementing other models on RDDs -- 3.3 Shark: SQL on RDDs -- 3.4 Implementation -- 3.5 Performance -- 3.6 Combining SQL with complex analytics -- 3.7 Summary --
505 8 _a4. Discretized streams -- 4.1 Introduction -- 4.2 Goals and background -- 4.3 Discretized streams (D-streams) -- 4.4 System architecture -- 4.5 Fault and straggler recovery -- 4.6 Evaluation -- 4.7 Discussion -- 4.8 Related work -- 4.9 Summary --
505 8 _a5. Generality of RDDs -- 5.1 Introduction -- 5.2 Expressiveness perspective -- 5.3 Systems perspective -- 5.4 Limitations and extensions -- 5.5 Related work -- 5.6 Summary --
505 8 _a6. Conclusion -- 6.1 Lessons learned -- 6.2 Evolution of spark in industry -- 6.3 Future work -- References -- Author's biography.
520 _aThe past few years have seen a major change in computing systems, as growing data volumes and stalling processor speeds require more and more applications to scale out to clusters. Today, a myriad data sources, from the Internet to business operations to scientific instruments, produce large and valuable data streams. However, the processing capabilities of single machines have not kept up with the size of data. As a result, organizations increasingly need to scale out their computations over clusters. At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
650 0 _aElectronic data processing
_xDistributed processing.
650 0 _aDistributed databases.
_911734
650 0 _aBig data.
650 7 _aBig data.
_2fast
_947414
650 7 _aDistributed databases.
_2fast
_911734
650 7 _aElectronic data processing
_xDistributed processing.
_2fast
_947415
830 0 _aACM books ;
_v#11.
_947379
856 _uhttps://dl-acm-org.ezproxy.apu.edu.my/doi/book/10.1145/2886107
_zAvailable in ACM Digital Library. Requires Log In to view full text.
942 _2lcc
_cE-Book
999 _c383489
_d383489